KNERON-KL630-008

KL630 96board User Manual

96board

1 INTRODUCTION

1.1 Installation

Figure 1-1 96board Connectivity

The following steps describe the hardware installation procedure.

- 1. Connect the network cable to RJ45 connector.
- 2. Connect USB-UART Cable to J3
 - Pin 1 : Green, UARTO_RXD
 - Pin 2 : Black, GND
 - Pin 3 : White, UART0_TXD

Figure 1-2 UART Connects to J3

- 3. Connect HDMI cable for video display. (optional)
- 4. Connect type C cable for 5V DC Power

1.2 Connecting to Serial Terminal

When connecting the 96board via serial terminal programs (e.g. Minicom and gtkterm on Linux OS or HyperTerminal and PuTTY on Windows OS) at the host PC, users must set the following console configurations in the serial terminal programs:

Table 1-1	Console Configuratio	n
-----------	-----------------------------	---

Option	Configuration
Bits per second	115200
Data bits	8 bits
Parity	None
Stop bits	1bit
Flow control	none

When the 96board is powered on, the boot message will appear on the console and users can press any key to stop auto booting sequence from entering the U-Boot environment.

1.3 Boot Information

The boot message allows users to find important hardware information (e.g. number of memory slots, memory size, and boot device) during the booting process. Figure 1-3 lists some of the important boot messages and Figure 2-4 shows the output information of various boot messages.

Table 1-2 Boot Message

Boot Message	Description	
DRAM	Shows the number of memory slots and memory size	
SN	Shows the model of SPI NAND Flash device, page size, and total size.	
Loader	Shows version of the loader	
Net	Shows the model of ethernet phy device, ethernet phy type configuration, and network status.	

U-Boot 2015.01-Vienna-SDK-2.5-3 (Jan 18 2023 - 16:04:27)
I2C: ready
SPI: ready
DRAM: 256 MIB
WARNING: Caches not enabled
NAND: SPI NAND: Got idcode ef aa 21 00 00.
SN: Detected W25N01GVSF1G with page size 2048, total 128 MiB
128 MIB
MMC: MMC Version 2.90a
VPL DWMMC: 0
In: serial
Out: serial
Err: serial
Model: Schubert
Loader: Version 0x23010601 @ 0x81005fe0
Relocation Offset is: 03f2c000
Relocating to 03f2e000, new gd at 03a1def0, sp at 03a1ded0
Net: GMAC Desc/Buf : 0x03ff3e00 -> 0x04000000
PHY TYPE : Generic PHY(rmii)
Link Detect : dweqos Waiting for PHY auto negotiation to complete don
Link Status : Link Up
: Full Duplex
LINK Speed : 100mbps
dweqos
HIC any key to stop autobool: 0

Figure 1-3 Boot Message

1.4 U-Boot Environment

When the message "**Hit any key to stop autoboot**" appears, users can hit any key to load U-Boot command prompt. The following table describes the common commands that can be used under U-Boot prompt.

Table 1-3	U-Boot Environment

Common Command	Description
2	Lists all command or information about specified command.
ŗ	Usage: ? [command]
bolo	Lists all command or information about specified command.
neip	Usage: help [command]
printenv	Print environment variables.
	Usage: printenv [variable]
satany	Sets environment variables.
setenv	Usage: setenv variable [value]
saveenv	Save environment variables to persistent storage.
tftp	Downloads files from the TFTP server to the DDR.
	Usage: tftp [address] [file path]
rosot	Perform RESET of the CPU.
Teset	Usage: reset

The syntax "printenv" will list all the environment variables used in U-Boot. Figure shows the U-Boot default environment settings after entering "printenv". U-Boot will pass the variable "bootargs" to kernel after booting to Linux kernel.

Figure 1-4 U-Boot Environment Settings

The following table describes the U-Boot environment variables.

Table 1-4 U-Boot Environment

Variable	Description	Example
	The contents of this variable are passed to the	
bootargs	Linux kernel as boot arguments (aka "command	root=/dev/mtdblock4 mem=16M@0x00000000
	line") including root file system partition, memory	mem=45M@0x1100000 console=0,115200
	size, UART console port number, and UART	phy_mode=rmii
	console baud rate.	
	This variable defines a command string that is	
	automatically executed when the initial	run setargs;nand read 0xa00000 0x1e0000
bootcmd	countdown is not interrupted. This command is	0x400000;nand read 0x1400000 0x180000
	only executed when the variable bootdelay is also	0x60000;bootz 0xa00000 - 0x1400000
	defined.	
		setenv bootargs;setenv bootargs root=\${root}
cotorgo	Sets arguments to pass the Linux kernel with the	mem=16M@0x0000000
setargs	use of boot command.	mem=45M@0x1100000 console=0,\${baudrate}
		phy_mode=\${phy_mode} \${mtdparts}
	After reset, U-Boot will wait for this number of	
	seconds before it executes the contents of the	
bootdolov	bootcmd variable. At this moment, a countdown is	2
bootdelay	printed and can be interrupted by pressing any	5
	key. Set this variable to 0 to boot without delay or	
	"-1" to disable autoboot.	
	A decimal number that selects the console baud	
	rate (in bps). A predefined list of baud rate	
	settings is currently available. When users change	
baudrate	the baud rate (using the "setenv baudrate"	
	command), U-Boot will switch the baud rate of the	
	console terminal and wait for a newline which	
	must be entered with the new speed setting. This	115200
	is to make sure users are certain to run with the	
	new speed. If this fails, users will have to reset the	
	board (which will operate at the previous speed	
	since users are not able to use "saveenv" in the	
	new setting). If no "baudrate" variable is defined,	
	the default baud rate used is 115200.	

Variable	Description	Example
ethaddr	Ethernet MAC address for the first or sole Ethernet interface (eth0 in Linux).	02:00:DB:00:11:F2
ipaddr	IP address of the EVM; needed for tftp command.	192.168.3.10
serverip	IP address of the TFTP server; needed for tftp command.	172.17.0.6
gatewayip	IP address of the gateway (router); needed for tftp command.	172.23.0.1
netmask	Subnet mask of the EVM; needed for tftp command.	255.255.255.0
Phy_mode	Operation mode of the Ethernet PHY interface; supported values are rmii, rgmii, and mii.	rmii
modelname	SoC model name	Schubert

1.5 Telnet

To establish Telnet connection, please insert the following

telnet 192.168.3.10

login : root

<pre>> telnet 192.168.3.10</pre>
Trying 192.168.3.10
Connected to 192.168.3.10.
Escape character is '^]'.
buildroot login: root
#
#

Figure 1-5 Telnet Connection

1.6 RTSP Video Stream

Please make sure rtsps and solution_host_stream are running in process, and open the streaming software (e.g. VLC).

Open Network Stream \rightarrow URL \rightarrow rtsp://192.168.3.10/live1.sdp

Figure 1-6 Open Network Stream

Figure 1-7 Running Video Streaming

1.7 HDMI Display

Connect HDMI cable for video display. The output resolution should be 1920x1080.

1.8 USB Host – Mass Storage

1. Change SW1 switch to Host

Figure 1-8 Change SW1 switch to Host

- 2. Connect USB disk.
- 3. Mount USB disk.

<pre># mkdir /mnt/flash/usb</pre>
<pre># mount /dev/sda1 /mnt/flash/usb/</pre>
<pre># cd /mnt/flash/usb/</pre>
ls
20180108
60?????.exe
DMS.pdf
EFI
EM048 5M CMOS Sensor
LOST.DIR
M3C_RDK_Ver1.1(A.a).zip
M5S-V2.4.5.tar.gz

Figure 1-9 Mount USB Disk

1.9 USB Device – PC (Kneron Plus)

1. Change SW1 switch to Device.

Figure 1-10 Change SW1 Switch to Device

- 2. Connect USB cable to PC.
- 3. Run the following command.

echo 3 > /proc/sys/kernel/panic

/sbin/watchdog -T 3 -t 2 /dev/watchdog

sh /mnt/flash/etc/plus_usb_companion_init.sh

1.10 Audio

Users can plug-in audio cable to line in/out.

Run test program

```
cd /mnt/flash/plus/kp_firmware/kp_firmware_0/kp_firmware/bin
```

./audio_test/sh

1.11 GPIO

For example :

LED1 : GPIOC_1_IO_DATA[25]

```
echo 57 > /sys/class/gpio/export
```

```
echo out > /sys/class/gpio/gpio57/direction
```

Turn on LED

echo 1 > /sys/class/gpio/gpio57/value

Turn off LED

echo 0 > /sys/class/gpio/gpio57/value

Figure 1-11 LED1 to GPIO57

Table 1-5 GPIO Setting

Board GPIO Number	Kernel GPIO Number
LED1	gpio57
LED2	gpio58
GPIO_1	gpio63
GPIO_2	gpio64
GPIO_3	gpio65
GPIO_4	gpio66

1.12 AGPO

Generate a 1KHz frequency with 80% duty cycple at PWM channel 0 and on fly change to 60% duty cycle

echo 0 > /sys/class/pwm/pwmchip0/export echo 1000000 > /sys/class/pwm/pwmchip0/pwm0/period echo 800000 >/sys/class/pwm/pwmchip0/pwm0/duty_cycle echo 1 >/sys/class/pwm/pwmchip0/pwm0/duty_cycle

Using AGPOC_O_DATA[5]

echo 5 > /sys/class/pwm/pwmchip0/export
echo 1000 > /sys/class/pwm/pwmchip0/pwm5/perio
echo 1 >/sys/class/pwm/pwmchip0/pwm5/enable
echo 500 > /sys/class/pwm/pwmchip0/pwm5/duty_cycle

Table 1-6 AGPO Setting

AGPO Number	PWM Number
agpo_0	pwm0
agpo_1	pwm1
agpo_2	pwm2
agpo_3	pwm3
agpo_4	pwm4
agpo_5	pwm5
agpo_6	pwm6

AGPO Number	PWM Number
agpo_7	pwm7

1.13 I2C

Users can use i2c tool to control i2c

- a. i2cdetect
- b. i2cset
- c. i2cget

1.14 SPI

Users can use spidev_test to control the SPI device

Build the spidev_test binary from Knernel

cd Kernel/tools/spi make ⊁ spidev_test

For example,

./spidev_test -s 4000000 -d 100 -b 8 -p "\xdc\x43" -v -C

1.15 Firmware Update

Please download latest firmware at Kneron's website

- 1. Format Micro SD card to FAT32
- 2. Rename SD card to BOOTEXT
- 3. Copy all the file into SD card

Figure 1-12 Copy Files Into SD Card

- 4. Insert Micro SD card to 96board.
- 5. Power-on and it will start update firmware automatically.